
PDHonline Course E334 (3 PDH)

Structured Text Programming

2012

Instructor: Anthony K. Ho, PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone & Fax: 703-988-0088

www.PDHonline.org
www.PDHcenter.com

An Approved Continuing Education Provider

http://www.PDHonline.org
http://www.PDHcenter.com

www.PDHcenter.com PDH Course www.PDHonline.org

Table of Contents

1. Background and Benefits of Structured Text ...1
2. Comment ...2
3. Data Type..2

3.1. Simple Data Type ...2
3.1.1. Integer ...2
3.1.2. Floating Point..3
3.1.3. DateTime ..3
3.1.4. String...3
3.1.5. Bit String...3

3.2. Derived Data Type..4
3.2.1. Structured Data Type..4
3.2.2. Enumerated Data Type ...4
3.2.3. Sub-Ranges Data Type ...5
3.2.3. Array Data Type ...5

4. Variable Declaration ...6
5. Program Structure ...7
6. Assignment Statement ..8
7. Expression...9

7.1. Evaluating Expression ..10
8. Function ..12
9. Conditional Statement...13

9.1. IF-THEN-ELSE Statement ...14
9.2. CASE Statement ...15

10. Iteration statement...16
10.1. FOR-DO Statement...16
10.2. WHILE-DO Statement ...17
10.3. REPEAT-UNTIL Statement ...18

11. Termination Statement..18
11.1. EXIT Statement ..18
11.2. RETURN Statement ...19

12. Best Practice for the Language ...19
12.1. Variable Name ..20
12.2. Indentation ..21
12.3. Avoid Spaghetti Code...21
12.4. Use Function ...21
12.5. Scope of Variable..21
12.6. Other Suggestions ...21

www.PDHcenter.com PDH Course www.PDHonline.org

1. Background and Benefits of Structured Text

Structured Text (ST) is a high level textual programming language that is
syntactically similar to Pascal. It is developed and published by IEC in the IEC
61131-3 international standard in 1993, which is aimed to standardize
programming languages for programmable logic controllers (PLC). ST is very
flexible and intuitive for writing control algorithms. The language, which is as
efficient as ladder logic, uses typical operations such as logical branching,
multiple branching, and loops. ST programs can be created in any text editor
and they resemble sentences, making them easy to program, debug, test, and
understand. Due to its highly-structured nature, ST is ideal for tasks requiring
complex math, algorithms, or decision-making.

In recent years, an increasing number of industrial users are requesting the use of
ST over other programming languages for their industrial process needs. The
reason is simple: most manufacturing companies prefer vendor independent
platform in their plants. When circumstances arise, a control system can be
switched from one vendor to another with minimal effort. It is because most
common PLC manufacturers have already adopted ST. ST can also be written to
run on hardware and software PLC platforms, making it one of the most universal
text based languages.

Besides its universal nature, ST offers these benefits to engineers and
programmers:

 Engineers and programmers trained in computer languages can learn to
program ST without difficulty.

 Tag Structure UDT (User Defined Tags), local variables, symbols, and ST
programming conventions make the programs easy to understand.

 Programs can be created in any text editor.
 Programs run as fast and efficient as ladder logic.
 State Machine can easily be emulated with CASE statement.
 ST can be connected to other IEC 61131-3 languages, such as Ladder

Diagram (LD) and Sequential Function Chart (SFC).
 A running program or part of a running program can be changed without

stopping the PLC (online change).
 Many build-in functions are available.

 ©2010 Anthony K. Ho Page 1 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

2. Comment

Comment is very essential part of any programming languages. Comments in the
code serve to explain the flow and purpose of the code so that its understanding
and maintenance become easier. There are two types of comment in ST:

// Line Comment
(* This is a Block
 Comment *)

Line command can only be placed on a line, on its own or after some code.
Comment placed between the set (* and *) is called block comment and therefore
multiple lines of comments are allowed. However, nested comments are not
allowed.

3. Data Type

Similar to other programming languages, the IEC 61131-3 standard provides many
different types of data in ST programs, both simple and derived data types.

3.1. Simple Data Type

The following are the simple data types provided by the standard:

 Integer
 Floating Point
 DateTime
 String
 Bit String

3.1.1. Integer

Lower
Range

Upper
Range Data Type Description Example

SINT Short Integer −128 127 100
INT Integer −32768 32767 20000

31 31 18DINT Double Integer −2 2 - 1 2
63 63 10LINT Long Integer −2 2 - 1 −2

USINT Unsigned Short Integer 0 255 22
UINT Unsigned Integer 0 216 - 1 3300

 ©2010 Anthony K. Ho Page 2 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

32 20UDINT Unsigned Double Integer 0 2 - 1 2
ULINT Unsigned Long Integer 0 264 55 - 1 2

If a variable is assigned a value or variable that is out of its permitted range, an
overflow runtime error may occur.

3.1.2. Floating Point

Lower
Range

Upper
Range Data Type Description Example

38REAL Real Number −10 1038 25−10
308LREAL Long Real Number −10 10308 10185

3.1.3. DateTime

Data Type Description Example

The Duration of
Time TIME TIME#16d3h38m4s120ms

DATE Calendar Date DATE#2005-06-15
TIME_OF_DAY Time of Day TIME_OF_DAY#21:45:30.92

Date and Time of
Day

DATE_AND_TIME#2005-06-15-
12:30:00 DATE_AND_TIME

In the above example, the keywords can be abbreviated to T#, D#, TOD#, and
DAT#, respectively.

3.1.4. String

Data Type Description Example
STRING Character String ‘This is a string’

Note that the maximum length of STRING is 254 characters.

3.1.5. Bit String

Data Type Description Example
BOOL Bit String of 1 Bit 1
BYTE Bit String of 8 Bits 01110001
WORD Bit String of 16 Bits 0110111011001000

 ©2010 Anthony K. Ho Page 3 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

DWORD Bit String of 32 Bits 01101111111111101101101011110110
LWORD Bit String of 64 Bits 01101111111111101101101111111111101101101

3.2. Derived Data Type

Aside from using the simple data types, programmers always find it necessary to
construct sophisticated data types; therefore, ST provides programmer the ability to
build new and custom data types. A new data type is constructed by enclosing its
definition within the keywords TYPE and END_TYPE. The definition consists of
the name of the data type under construction, followed by a colon, and then by the
kind of derived data type to be constructed. There are four kinds of derived data
types:

 Structured Data Type
 Enumerated Data Type
 Sub-Ranges Data Type
 Array Data Type

3.2.1. Structured Data Type

A structured data type is a composite data type, constructed by enclosing the
elements of the composition within the keywords STRUCT and END_STRUCT.
Each element consists of its name followed by a colon and then by its data type. A
structured data type itself can contain one or more structured data types. For
example:

TYPE Valve :
STRUCT

DisplayColor : ValveColor;
CurrentState : ValveState;
Pressure : REAL;

END_STRUCT;
END_TYPE

In the example above, the ValveState data type is a structured data type itself and
ValveColor is an enumerated data type as illustrated below.

3.2.2. Enumerated Data Type

 ©2010 Anthony K. Ho Page 4 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

An enumerated data type is composed by enclosing the elements of the
enumeration in parentheses. Each element consists of a different name. For
example:

TYPE ValveColor :
(Red, Yellow, Green);

END_TYPE

All derived data types can be assigned initial default values. The defaults are
included in the type definition. For example:

TYPE ValveColor :
(Red, Yellow, Green) := Red;

END_TYPE

3.2.3. Sub-Ranges Data Type

A sub-ranges data type is composed by limiting the range of another data type,
usually integers. Limited versions of a data type consist of the name of the data
type to be restricted, followed by a lower and an upper bound separated by two
dots and enclosed in parentheses. For example:

TYPE PressureRange :
INT(-100..+500);

END_TYPE

The sub-ranges data type can be used to ensure variable declared with the data type
will not be assigned a value out of its range. Runtime error will occur when out of
range data is assigned to the variable.

3.2.3. Array Data Type

An array data type is composed by the keyword ARRAY, followed by a multi-
dimensional vector of ranges of indices enclosed by square brackets, and then by
the keyword OF, followed by the data type (simple or derived) that is going to be
contained in the array. A multi-dimensional vector of ranges of indices consists of
a comma-delimited list of ranges of indices. A range of indices consists of a lower
and upper bound of the range, both integers, separated by two dots. For example:

TYPE MeteringSkid :
ARRAY[1..5, 1..10] OF Valve;

END_TYPE

 ©2010 Anthony K. Ho Page 5 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

The above example creates a 2-dimensional array, a total of 50 elements in the
array. Although it is dependent on memory limitation of the running machine, you
should try to keep the total number of elements in the array below 65536. Only
values of same data types can be stored in an array. Also, array can be zero based,
if ARRAY[0..5] is declared, 6 array elements will be available.

4. Variable Declaration

ST programs allow named variables to be defined. This is similar to the use of
symbols when programming in ladder logic. Variable names must be begun with a
letter, after that they can include combinations of letters, numbers, and some
symbols such as ‘_’. Variable names are not case sensitive and can include any
combination of upper and lower case letters. However, they must not have the
same name as predefined functions, or user defined functions. For example, a
variable name ARRAY will be invalid. Also, direct memory access variable can
be used, such as I:001/02 and 40001. The following keywords can be used to
declare variables:

Declaration Description
VAR Local or Internal Variable Declaration
VAR_GLOBAL Global Variable Declaration
VAR_INPUT Input Variable Declaration
VAR_OUTPUT Output Variable Declaration
VAR_IN_OUT Input and Output Variable Declaration
VAR_ACCESS Direct Access Variable Declaration
VAR_EXTERNAL External Variable Declaration
VAR_TEMP Temporary Variable Declaration
AT Assign Memory Location to Variable
CONSTANT Value Cannot Be Changed
RETAIN Retain After Power Failure
END_VAR End of Variable Declaration

The above keywords define the scope of the variables. The VAR_INPUT,
VAR_OUTPUT and VAR_IN_OUT declarations are used for variables that are
passed as arguments to the program or function. The RETAIN declaration is used
to retain a variable value, even when the PLC power has been cycled.
The following example uses some of the keywords mentioned above.

INTERFACE

 ©2010 Anthony K. Ho Page 6 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

VAR_GLOBAL RETAIN // Global Battery-Backed Variable
Area : REAL;
TimePeriod : TIME := t#50ms; // 50 ms As Initial Value

END_VAR
PROGRAM DemoProgram; // Declare the program

END_INTERFACE

FUNCTION_BLOCK Pressure : REAL

VAR_INPUT
Force1, Force2 : REAL;

END_VAR
Pressure := (Force1 + Force2) / Area;

END_FUNCTION_BLOCK

IMPLEMENTATION

PROGRAM DemoProgram
VAR // Local Variable

FlipFlop : BOOL; // Flag
AT %QL100 : LWORD; // Output

END_VAR
(* Program Body *)

END_PROGRAM
END_ IMPLEMENTATION

Although ST can run on PC, its primary running platform is PLC. Therefore, there
is no file I/O with ST programming. ST program can read from and write to stored
memory through PLC register as described in the above example using the
keyword AT and then the register address.

5. Program Structure

As you have seen in the previous example, ST provides the programmer a
structured way to position the code. Variable and program declarations are first
placed within the keywords INTERFACE and END_INTERFACE. After that,
functions or function blocks are defined. IMPLEMENTATION and
END_IMPLEMENTATION keywords are then used to include the program
definition:

INTERFACE
VAR_GLOBAL

...
END_VAR
PROGRAM ProgramName;

END_INTERFACE

 ©2010 Anthony K. Ho Page 7 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

FUNCTION_BLOCK FunctionName

...
END_FUNCTION_BLOCK

IMPLEMENTATION

PROGRAM ProgramName
...

END_PROGRAM
END_ IMPLEMENTATION

6. Assignment Statement

Statements are software instructions for various purposes such as assignment
statement, calling function block, iterative processing, conditional evaluation, etc.
Among those, assignment statement is used the most; it can change the value
stored in a variable or the value returned by a function. The general syntax of
assignment statements takes the form:

VarA := VarB;

VarA is a variable to which a value is assigned using variable VarB which can also
be an expression or a literal constant. The value obtained by evaluation of VarB is
assigned to the variable VarA by this statement and replaces the previous value of
VarA. Value of VarB will not be changed after the assignment. Care must be
taken to ensure that the data type of VarA is the same as that of VarB; otherwise,
runtime error may occur. Take a look at the following examples.

MotorSpeed := 22.8;

This statement assigns a literal constant value of 22.8 to a variable MotorSpeed. It
is assumed that the variable MotorSpeed has been declared as a REAL data type
variable in the declaration section of the program.

Counter := Counter + 1;

The above statement assigns a value to an Integer variable Counter, which is
incremented by 1 (add 1 to Counter’s previous value and assign back to Counter.)

Pressure[4] := Force / Area;

 ©2010 Anthony K. Ho Page 8 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

This statement replaces the 4th element of the array variable Pressure by the value
evaluated by the expression Force / Area where Force and Area are two other
variables having some predetermined values. (Note that if Area has a value of
zero, division by zero error will result during runtime.) The values of Force and
Area remain unchanged after the assignment statement.

RadianA := SIN(AngleA);

This is an example of using an arithmetic function (a sine function) for assigning a
value to variable RadianA.

TemperatureArray1 := TemperatureArray2;

This statement causes the value of array variable TempeatureArray2 to be assigned
to another array variable TempeatureArray1. The value of TempeatureArray2
remains unchanged after the assignment. It is important to make sure that the two
array variables must be of the same data type and size, for example REAL and 100,
respectively.

Assume the following array variable CoeffArray contains 30 integers:

CoeffArray := 15(1), 10(2), 5(3);

The above statement will assign 1 to the first 15 elements, 2 to the next 10
elements, and so forth. This can be used to conveniently initialize array variable.

7. Expression

Expressions are part of statements where the values of one or several variables are
manipulated using arithmetic or Boolean operations to produce a single value.
This value is then assigned to another variable, which should be of the same data
type as the result of the evaluation. Runtime error may occur if the data type of the
result of the expression evaluation and that of the variable to be assigned do not
match. An expression is placed on the right hand side of an assignment statement
and the variable to be assigned on the left hand side. For example:

VarA := VarB + VarC;

The expression VarB + VarC is evaluated first and then assigned to variable VarA.
All three variables must use the same data type. If the data types are not the same,

 ©2010 Anthony K. Ho Page 9 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

casting function such as INT_TO_DINT can be used to force the data type
conversion, for example:

 VarA := INT_TO_DINT(VarB + VarC);

7.1. Evaluating Expression

An expression is evaluated using the order of operator precedence. Operator
precedence refers to the order in which operators are used or evaluated. An
operator with higher precedence will be used or evaluated before an operator with
lower precedence. In the case that operators in two different parts having equal
precedence, they are evaluated from left to right. Below are the rules for
expression evaluation:

A. All parenthesized sub-expressions are evaluated fist. Nested parenthesized sub-

expressions are evaluated inside out, with the innermost sub-expression
evaluated first.

B. The operator precedence rule: operators in the same sub-expression are
evaluated in the order from level 1 through level 4 as shown in the table below,
with level 1 being evaluated first.

C. The left associative rule: operators in the same sub-expression and at the same
precedence level (such as + and -) are evaluated left to right.

The table lists the operators from highest to lowest order of precedence in which an
expression will be evaluated.

Operator Description Example
() Parentheses Expression X := (A + B) * C;

Function Evaluation. Build-In
Functions such as SQRT, TOD,
FRD, NOT, NEG, LN, LOG, DEG,
RAD, SIN, COS, TAN, ASN,
ACS, ATN

Build-In or
User
Defined
Function ()

Avg1 := Avg_REAL(14.0,
15.0);

** Exponent X := A ** 3;
- Negation A := -A;
NOT Boolean Complement C := NOT D;
* Multiplication A := B * C;
/ Division A := B / C;
MOD Modulus A := B MOD C;

 ©2010 Anthony K. Ho Page 10 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

+ Addition A := B + C;
- Subtraction A := B - C;
<, <=, =,
<>, >=, > Comparison VarA := VarB >= VarC + 10;

AND, & Boolean AND (Logical) VarA := VarB AND VarC;
XOR Boolean Exclusive OR (Logical) VarA := VarB XOR VarC;
OR Boolean OR (Logical) VarA := VarB OR VarC;

As you can see, the NOT operator has the highest precedence, followed by the
multiplicative operators (including AND), the additive operators (including OR),
and finally the relational operators. Because the comparison operators have the
lowest precedence, you should generally use them with parentheses to prevent
unintentional results.

Let’s look at an example:

X := A + C / 2 + SQRT(A + B) - C * 3;

Assume the following values of A = 30, B = 6, and C = 4. The expression is
evaluated in this order:

(A + B) = (30 + 6) = 36
SQRT(36) = 6
C / 2 = 4 / 2 = 2
C * 3 = 4 * 3 = 12
X = 30 + 2 + 6 - 12 = 26

Therefore, X is assigned the value 26. If we add some parentheses to the above
expression, the result will change. For example:

X := (A + C) / 2 + (SQRT(A + B) – C) * 3;

Now the evaluation will be done in this order:

(A + C) = (30 + 4) = 34
(A + B) = (30 + 6) = 36
SQRT(36) = 6
(6 - C) = (6 - 4) = 2
34 / 2 = 17
2 * 3 = 6

 ©2010 Anthony K. Ho Page 11 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

17 + 6 = 23

The result becomes 23. This example illustrates how expression evaluation is
affected by the change in precedence obtained by introducing set of parentheses.
In the case of Boolean expressions, similar rules of precedence apply. However,
Boolean expression is evaluated only up to a point that is necessary to determine
the result. For example:

X := A AND B AND C;

If the value of A is FALSE, the expression is evaluated as FALSE right away since
the evaluation of the B and C will not affect the final result.

8. Function

Function is one of the basic building blocks of a program. It composes a sequence
of statements, with zero or more input values and one or more output values for
exchanging data. The advantage of using function is that a sequence of statements
can be reused many times without the need to rewrite the same and tedious code in
the program, which could help to reduce the size of program and syntax errors. A
function always produces the same output value(s) for the same set of input values.
Variable declaration keywords can be used to declare variables within a function.
ST supports two types of function: function and function block. Function is a
block with function value for extension of the basic PLC operation set. It is a logic
block with no static data which means that all local variables lose their value when
you exit the function and the variables are reinitialized the next time you call the
function. Function block, on the other hand, is a block with input and output
variables and is a code block with static data. Since function block has memory,
its output parameters can be accessed at any time and from any point in the user
program. Local variables retain their values between calls. Therefore, function
block is used more frequently by programmer.

To use function or function block, you must create its definition before calling it.
The following is an example of a function block which calculates the average
pressure of two valves. Two input arguments of REAL type are declared in the
function block and the computed result is passed back to the function name.

FUNCTION_BLOCK Valve_Average : REAL
VAR_INPUT

Valve1, Valve2 : REAL;
END_VAR

 ©2010 Anthony K. Ho Page 12 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

Valve_Average := (Valve1 + Valve2) / 2;
END_FUNCTION_BLOCK

Not only that the code can be reused many times, but different variables can be
passed to the function block and result from the computation is returned. The
following example demonstrates different ways to call the function block. Note
that the three ways of calling the function block below will yield the same output.

Avg1 := Valve_Average(Valve1 := 187.3, Valve2 := 176.9);
Avg2 := Valve_Average(187.3, 176.9);
ValveX := 187.3;
ValveY := 176.9;
Avg3 := Valve_Average(ValveX, ValveY);

The function call itself can behave as a variable; therefore, the following is valid.

Total := Total + Valve_Average(Valve1, Valve2);

The table below lists the variable type allowed in PROGRAM,
FUNCTION_BLOCK, and FUNCTION.

Allowed In: Variable Type
PROGRAM FUNCTION_BLOCK FUNCTION

VAR Yes Yes Yes
VAR_INPUT Yes Yes Yes
VAR_OUTPUT Yes Yes No
VAR_IN_OUT Yes Yes No
VAR_EXTERNAL Yes Yes No
VAR_GLOBAL Yes No No
VAR_ACCESS Yes No No

Note:

 PROGRAM may call FUNCTION and FUNCTION_BLOCK, but not the
other way around.

 FUNCTION may call FUNCTION.
 FUNCTION_BLOCK may call FUNCTION_BLOCK.
 FUNCTION_BLOCK may call FUNCTION, but not the other way around.

9. Conditional Statement

 ©2010 Anthony K. Ho Page 13 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

ST provides statements that decide a particular course of action depending on a set
of conditions. We will examine different types of conditional statements. IF-
THEN-ELSE statement is very common and it is often used when there are a few
conditions. When there are many conditions, CASE statement can be used to
improve readability of the program.

9.1. IF-THEN-ELSE Statement

The general format of this statement is as follows:

IF <Condition> THEN
<Statement>

ELSE
<Statement>

END_IF;

Note that the ELSE portion of the statement is optional. The following example
tests the status of the pump and the pressure reading to determine the states of the
open and closed latches.

IF (Pump_Status = TRUE) AND (Pressure > Set_Point) THEN
Open_Latch := TRUE;
Closed_Latch := FALSE;

ELSE
Open_Latch := FALSE;
Closed_Latch := TRUE;

END_IF;

If the conditions following the IF keyword are satisfied, then the value of variable
Open_Latch will be set to TRUE and Closed_Latch set to FALSE. Otherwise,
Open_Latch will be set to FALSE and Closed_Latch set to TRUE. These
statements can be nested within each other to form more complex conditions. The
format of nested conditions is as follows:

IF <Condition 1> THEN
<Statement 1>
IF <Condition 2> THEN

<Statement 2>
ELSE

<Statement 3>
END_IF

ELSE

 ©2010 Anthony K. Ho Page 14 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

<Statement 4>
END_IF;

In the above conditional statements, Statement 1 will be executed if Condition 1 is
satisfied. After executing Statement 1, Condition 2 is checked and if true,
Statement 2 will be executed; otherwise, Statement 3 is executed. If Condition 1 is
not satisfied, then Statement 4 will be executed instead. You can add an ELSIF
keyword to check more conditions in a conditional statement:

IF <Condition 1> THEN
<Statement 1>

ELSIF <Condition 2> THEN
<Statement 2>

ELSE
<Statement 3>

END_IF;

Statement 1 will be executed if Condition 1 is satisfied. If not, Condition 2 is
checked and if satisfied Statement 2 will be executed. If none of the above
conditions are satisfied, then Statement 3 will be executed. You can see that if
there are a lot of conditions to check, the IF-THEN-ELSE statement can get
cumbersome and become hard to read. CASE statement can be considered to
replace IF statement to increase readability of the code.

9.2. CASE Statement

CASE is a type of conditional statement where certain actions are carried out
depending on the value of a variable or expression. The CASE construct has the
general form:

CASE <Expression> OF
<Selector Value 1> : <Statement 1>
<Selector Value 2> : <Statement 2>
...

ELSE
<Statements...>

END_CASE;

For example, the speed of the conveyor will be determined by the position of the
manual switch:

CASE Switch_Position OF

 ©2010 Anthony K. Ho Page 15 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

1, 2 : Conveyor_Speed := 100;
3 : Conveyor_Speed := 200;
4..6 : Conveyor_Speed := 300;

ELSE
Conveyor_Speed := 0;

END_CASE;

CASE statement can also be used with enumerated variables. For example:

TYPE
Position : (Slow, Normal, Fast);

END_TYPE
VAR

Switch_Position : Position;
END_VAR
CASE Switch_Position OF

Slow : Conveyor_Speed := 100;
Normal : Conveyor_Speed := 200;
Fast : Conveyor_Speed := 300;

ELSE
Conveyor_Speed := 0;

END_CASE;

10. Iteration statement

Iteration statement causes a group of statements executed repeatedly based on the
value of an integer constant or variable used as a counter to decide how many
times the statements will be executed. It is also possible to do the iteration based
on a Boolean logic being satisfied. Care must be taken to ensure that the execution
does not cause an infinite loop. The following statements offer different methods
for iteration.

10.1. FOR-DO Statement

This construct causes an iteration to be performed based on the value of an integer
constant or variable of type INT, SINT or DINT. The general format of FOR-DO
iteration construct is as follows.

FOR <Initial Value> TO <Final Value> BY <Increment> DO
<Statements...>

END_FOR;

 ©2010 Anthony K. Ho Page 16 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

Note that in this statement BY <Increment> is optional, if omitted, the increment is
assumed to be 1. The statements will be iterated and executed until the value of
the counter variable reaches the final value. The counter variable check is made
each time before executing the statements.
Consider the following example:

For I := 1 TO 9 BY 2 DO
Motor_Fault[I] := FALSE; // Assign FALSE to Array Element

END_FOR;

This example will assign FALSE to positions 1, 3, 5, 7, and 9 of the array variable
MOTOR_FAULT. It is important that the value of the integer variable I is not
changed or affected in any ways in the statements inside the loop as it may cause
unpredictable behavior.

10.2. WHILE-DO Statement

This construct causes a group of statements to be executed repeatedly while a
particular Boolean expression remains TRUE. Since the check is performed before
the statements are executed, the program execution goes out of the loop when the
expression becomes FALSE. The general format of WHILE-DO iteration
construct is as follows.

WHILE <Boolean Expression> DO
<Statements...>

END_WHILE;

Consider the following example:

J := 1; // Initialize Iteration Variable
WHILE J <= 10 DO

Total := Total + Valve_Average(Valve[J], Valve[J + 1]);
J := J + 2; // Increment Iteration Variable

END_WHILE;

This example will add the average of valve array elements 1 and 2 to Total until 9
and 10. It is important that the value of the iteration variable J must be modified
inside the while loop so that the iteration will eventually be finished; otherwise,
infinite loop will occur and it may cause fault in the controller.

 ©2010 Anthony K. Ho Page 17 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

10.3. REPEAT-UNTIL Statement

This is similar to the WHILE-DO construct except that the check is made after the
statements are executed. The general format of REPEAT-UNTIL iteration
construct is as follows.

REPEAT
<Statements...>

UNTIL <Boolean Expression>
END_REPEAT;

The following example will yield the same result as the previous example.

J := 1; // Initialize Iteration Variable
REPEAT

Total := Total + Valve_Average(Valve[J], Valve[J + 1]);
J := J + 2; // Increment Iteration Variable

UNTIL J > 10
END_REPEAT;

11. Termination Statement

ST provides programmers two termination statements to exit and terminate
execution of statements.

11.1. EXIT Statement

It is sometimes necessary to terminate the execution of an iteration routine on the
occurrence of a certain event without completing the full sequence of the iteration.
In such cases, the EXIT statement can be used to go out of the loop. The statement
can only be used within an iteration. For example:

WHILE Tank_Level <= Max_Level DO
Valve_Open := TRUE;
IF Sensor_Fault = TRUE THEN

Valve_Open := FALSE;
EXIT;

END_IF;
END_WHILE;

While the tank fluid level is less than the maximum value, the valve will be kept
open. However, when there is a fault on the sensor, the valve will be closed and

 ©2010 Anthony K. Ho Page 18 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

the iteration terminates. Note that if this WHILE-DO statement is nested with
another WHILE-DO statement, EXIT will only exit out of this inner loop.

11.2. RETURN Statement

RETURN statement is similar to EXIT but is used inside function or function
block only. The statement causes the execution of a function to stop at the point
where RETURN is called. It provides an early exit for function or function block,
usually as the result of the evaluation of an IF statement. For example:

FUNCTION_BLOCK Valve_Control
VAR_INPUT

Tank_Level, Max_Level : REAL;
END_VAR
VAR_OUTPUT

Valve_Open : BOOL;
Out_Msg : STRING;

END VAR
IF Tank_Level > Max_Level THEN

Valve_Open := FALSE;
Out_Msg := ‘Tank Level is Full’;
RETURN;

 ELSE
Valve_Open := TRUE;

END_IF;
IF Tank_Level > Max_Level * 0.8 THEN

Out_Msg := ‘Tank Level is High’;
ELSE

Out_Msg := ‘Tank Level is Normal’;
END_IF;

END_FUNCTION_BLOCK

In this example, function block Valve_Control executes to open or close the valve
according to the tank level. If the tank level is greater than the maximum level,
valve is closed and tank is full message are returned and the function block is
terminated immediately. If that is not the case, then the tank level is further
checked to determine the appropriate message.

12. Best Practice for the Language

Although engineers and programmers are free to use the language to program in
their own styles, good practices should be followed to increase the readability
throughout the program. Upper or lower case and indentation can improve

 ©2010 Anthony K. Ho Page 19 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

program’s readability. Other programming techniques can actually prevent
potential runtime errors.

12.1. Variable Name

Unlike C or C++, ST is not case sensitive; however for clarity purpose and for you
or someone else reading your code later, it is best that you keep the case consistent
throughout your program. For example, upper case can be used for all expressions
and title case can be used for all variables. A variable MotorSpeed can be used to
represent motor speed. Use of underscore is also encouraged to separate many
words, for example, Initial_Motor_Frequency can be used. Be certain that you use
title case or underscore in a consistent manner. Also, abbreviation for long name
can be used, such as StdDev for standard deviation. Consider the following two
set of statements:

While Tanklevel <= MAXLEVEL do
Valve_Open := true;
IF SensorFault = TRUE then

valve_open := False;
exit;

END_IF;
end_while;

WHILE Tank_Level <= Max_Level DO

Valve_Open := TRUE;
IF Sensor_Fault = TRUE THEN

Valve_Open := FALSE;
EXIT;

END_IF;
END_WHILE;

The second set of statements is a lot easier to read than the first, all declared
variables can easily be differentiated from the reserved keywords. Therefore,
careful planning before writing your program is critical.

It is also important to note that meaningful names be chosen for variables. If you
want to represent the status of pump 141, use Pump_Status_141, instead of
Status141. Typically, I, J, and K are used as iterative variables and array indices,
and Temp1 and Temp2, etc. are used as temporary variables. These variables,
however, should not be extensively used and must be used consistently. Some
programmers also prefer to attach the type of the variable as the prefix of the
variable. For example, Int_Number_of_Run and Real_Initial_Temperature.

 ©2010 Anthony K. Ho Page 20 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

12.2. Indentation

Using correct indentation increases readability of your code. On the other hand,
using no or incorrect can make the code very hard to read. Care must be taken to
use consistent indentation throughout your program. A lot of ST programming
interfaces allow you to set the length of the tab key, for example two spaces, so
that you can quickly and correctly indent your code.

12.3. Avoid Spaghetti Code

Spaghetti code is a pejorative term for source code which has a complex and
tangled control structure, especially one using many GOTOs, exceptions, threads,
or other unstructured branching constructs. You should only use the GOTO
statement in special circumstances (for example, for troubleshooting). Also,
extended use of EXIT can cause unexpected spaghetti code. Therefore, always try
to avoid EXIT and use other conditional statements such as IF and CASE to
replace the branching construct. On the other hand, EXIT can be useful when
performing debugging of your code, but care must be taken when you finalize the
code.

12.4. Use Function

The most basic way of gaining organizational control is the use of subroutines. By
dividing one big program into several smaller ones, each with a specific task to
perform, the programmer can write one clean main program that calls these
subroutines as needed. This is also quite efficient in that subroutines represent a
form of reusable code such that different values can be computed at different times
using the same piece of code.

12.5. Scope of Variable

Very often, you will have to decide whether to use local or global variables. Using
global variables is convenient since you only have to declare them once. However,
a very bad side effect is inadvertently changing the value of the variables in other
part of the program and this problem is often difficult to debug. Using local
variables wherever possible is therefore recommended.

12.6. Other Suggestions

 ©2010 Anthony K. Ho Page 21 of 22

www.PDHcenter.com PDH Course www.PDHonline.org

There are a few other programming tips when writing your ST programs:

 Replace nested and complicated IF-THEN statement with CASE statement.
 Avoid infinite loop. Infinite loop can fault a processor.
 Do not use more than 3 nested loops.
 Do not use more than 3-dimensional array.
 Do not create too many unnecessary array elements. Because they are easy

to create, programmers tend to create too many of them and use up a lot of
system resource.

 If you often forget the operator precedence rules, you should use parentheses
to make the order of evaluation explicit.

 ©2010 Anthony K. Ho Page 22 of 22

	1. Background and Benefits of Structured Text
	2. Comment
	3. Data Type
	3.1. Simple Data Type
	3.1.1. Integer
	3.1.2. Floating Point
	3.1.3. DateTime
	3.1.4. String
	3.1.5. Bit String

	3.2. Derived Data Type
	3.2.1. Structured Data Type
	3.2.2. Enumerated Data Type
	3.2.3. Sub-Ranges Data Type
	3.2.3. Array Data Type

	4. Variable Declaration
	5. Program Structure
	6. Assignment Statement
	7. Expression
	7.1. Evaluating Expression

	8. Function
	9. Conditional Statement
	9.1. IF-THEN-ELSE Statement
	9.2. CASE Statement

	10. Iteration statement
	10.1. FOR-DO Statement
	10.2. WHILE-DO Statement
	10.3. REPEAT-UNTIL Statement

	11. Termination Statement
	11.1. EXIT Statement
	11.2. RETURN Statement

	12. Best Practice for the Language
	12.1. Variable Name
	12.2. Indentation
	12.3. Avoid Spaghetti Code
	12.4. Use Function
	12.5. Scope of Variable
	12.6. Other Suggestions

