
Serial Peripheral Interface (SPI) a
learn.sparkfun.com tutorial

Available online at: http://sfe.io/t16

Contents

Introduction
What's Wrong with Serial Ports?
A Synchronous Solution
Receiving Data
Chip Select (CS)
Programming for SPI
Resources and Going Further

Introduction

Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between
microcontrollers and small peripherals such as shift registers, sensors, and SD cards. It uses
separate clock and data lines, along with a select line to choose the device you wish to talk to.

Suggested Reading

Stuff that would be helpful to know before reading this tutorial:

Serial Communication

Asynchronous serial communication concepts: packets, signal levels, baud rates, UARTs and more!
Favorited Favorite 91

Binary

Binary is the numeral system of electronics and programming...so it must be important to learn. But,
what is binary? How does it translate to other numeral systems like decimal?
Favorited Favorite 45

Shift Registers

An introduction to shift registers and potential uses.
Favorited Favorite 41

Logic Levels

Page 1 of 11

https://learn.sparkfun.com/tutorials
http://sfe.io/t16
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/binary
https://learn.sparkfun.com/tutorials/shift-registers
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/ast-can485-hookup-guide
https://learn.sparkfun.com/tutorials/mp3-player-shield-music-box
https://learn.sparkfun.com/tutorials/using-the-serial-7-segment-display
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial

Learn the difference between 3.3V and 5V devices and logic levels.
Favorited Favorite 74

What's Wrong with Serial Ports?

A common serial port, the kind with TX and RX lines, is called "asynchronous" (not synchronous)
because there is no control over when data is sent or any guarantee that both sides are running at
precisely the same rate. Since computers normally rely on everything being synchronized to a
single “clock” (the main crystal attached to a computer that drives everything), this can be a problem
when two systems with slightly different clocks try to communicate with each other.

To work around this problem, asynchronous serial connections add extra start and stop bits to each
byte help the receiver sync up to data as it arrives. Both sides must also agree on the transmission
speed (such as 9600 bits per second) in advance. Slight differences in the transmission rate aren't
a problem because the receiver re-syncs at the start of each byte.

(By the way, if you noticed that "11001010" does not equal 0x53 in the above diagram, kudos to
your attention to detail. Serial protocols will often send the least significant bits first, so the smallest
bit is on the far left. The lower nybble is actually 0011 = 0x3, and the upper nybble is 0101 = 0x5.)

Asynchronous serial works just fine, but has a lot of overhead in both the extra start and stop bits
sent with every byte, and the complex hardware required to send and receive data. And as you've
probably noticed in your own projects, if both sides aren't set to the same speed, the received data
will be garbage. This is because the receiver is sampling the bits at very specific times (the arrows
in the above diagram). If the receiver is looking at the wrong times, it will see the wrong bits.

A Synchronous Solution

SPI works in a slightly different manner. It's a "synchronous" data bus, which means that it uses
separate lines for data and a "clock" that keeps both sides in perfect sync. The clock is an
oscillating signal that tells the receiver exactly when to sample the bits on the data line. This could
be the rising (low to high) or falling (high to low) edge of the clock signal; the datasheet will specify
which one to use. When the receiver detects that edge, it will immediately look at the data line to
read the next bit (see the arrows in the below diagram). Because the clock is sent along with the
data, specifying the speed isn't important, although devices will have a top speed at which they can
operate (We'll discuss choosing the proper clock edge and speed in a bit).

Page 2 of 11

https://cdn.sparkfun.com/assets/f/c/6/2/4/52ddb2d5ce395f59658b4567.png

One reason that SPI is so popular is that the receiving hardware can be a simple shift register. This
is a much simpler (and cheaper!) piece of hardware than the full-up UART (Universal Asynchronous
Receiver / Transmitter) that asynchronous serial requires.

Receiving Data

Note: You may not recognize the COPI/CIPO labels for SPI pins. SparkFun has joined with other
members of OSHWA in a resolution to move away from using "Master" and "Slave" to describe
signals between the controller and the peripheral. Check out this page for more on our reasoning
behind this change. You can also see OSHWA's resolution here.

You might be thinking to yourself, self, that sounds great for one-way communications, but how do
you send data back in the opposite direction? Here's where things get slightly more complicated.

In SPI, only one side generates the clock signal (usually called CLK or SCK for Serial ClocK). The
side that generates the clock is called the "controller", and the other side is called the "peripheral".
There is always only one controller (which is almost always your microcontroller), but there can be
multiple peripherals (more on this in a bit).

When data is sent from the controller to a peripheral, it's sent on a data line called COPI, for
"Controller Out / Peripheral In". If the peripheral needs to send a response back to the controller,
the controller will continue to generate a prearranged number of clock cycles, and the peripheral
will put the data onto a third data line called CIPO, for "Controller In / Peripheral Out".

Page 3 of 11

https://cdn.sparkfun.com/assets/d/6/b/f/9/52ddb2d8ce395fad638b4567.png
https://www.sparkfun.com/products/733
https://www.sparkfun.com/spi_signal_names
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

Notice we said "prearranged" in the above description. Because the controller always generates the
clock signal, it must know in advance when a peripheral needs to return data and how much data
will be returned. This is very different than asynchronous serial, where random amounts of data can
be sent in either direction at any time. In practice this isn't a problem, as SPI is generally used to
talk to sensors that have a very specific command structure. For example, if you send the command
for "read data" to a device, you know that the device will always send you, for example, two bytes in
return. (In cases where you might want to return a variable amount of data, you could always return
one or two bytes specifying the length of the data and then have the controller retrieve the full
amount.)

Note that SPI is "full duplex" (has separate send and receive lines), and, thus, in certain situations,
you can transmit and receive data at the same time (for example, requesting a new sensor reading
while retrieving the data from the previous one). Your device's datasheet will tell you if this is
possible.

Chip Select (CS)

There's one last line you should be aware of, called CS for Chip Select. This tells the peripheral that
it should wake up and receive / send data and is also used when multiple peripherals are present to
select the one you'd like to talk to.

Page 4 of 11

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/BasicSPI_Updated.jpg

The CS line is normally held high, which disconnects the peripheral from the SPI bus. (This type of
logic is known as “active low,” and you’ll often see used it for enable and reset lines.) Just before
data is sent to the peripheral, the line is brought low, which activates the peripheral. When you're
done using the peripheral, the line is made high again. In a shift register, this corresponds to the
"latch" input, which transfers the received data to the output lines.

Multiple peripherals

There are two ways of connecting multiple peripherals to an SPI bus:

1. In general, each peripheral will need a separate CS line. To talk to a particular peripheral,
you'll make that peripheral's CS line low and keep the rest of them high (you don't want two
peripherals activated at the same time, or they may both try to talk on the same CIPO line
resulting in garbled data). Lots of peripherals will require lots of CS lines; if you're running low
on outputs, there are binary decoder chips that can multiply your CS outputs.

Page 5 of 11

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/SPI_CS_Updated.jpg
https://www.sparkfun.com/products/733
https://www.sparkfun.com/products/9577

2. On the other hand, some parts prefer to be daisy-chained together, with the CIPO (output) of
one going to the COPI (input) of the next. In this case, a single CS line goes to all the
peripherals. Once all the data is sent, the CS line is raised, which causes all the chips to be
activated simultaneously. This is often used for daisy-chained shift registers and addressable
LED drivers.

Note that, for this layout, data overflows from one peripheral to the next, so to send data to any one
peripheral, you'll need to transmit enough data to reach all of them. Also, keep in mind that the first
piece of data you transmit will end up in the last peripheral.

This type of layout is typically used in output-only situations, such as driving LEDs where you don't
need to receive any data back. In these cases you can leave the controller's CIPO line
disconnected. However, if data does need to be returned to the controller, you can do this by
closing the daisy-chain loop (blue wire in the above diagram). Note that if you do this, the return
data from peripheral 1 will need to pass through all the peripherals before getting back to the
controller, so be sure to send enough receive commands to get the data you need.

Programming for SPI

Many microcontrollers have built-in SPI peripherals that handle all the details of sending and

Page 6 of 11

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/MultipleCS_Updated.jpg
https://www.sparkfun.com/products/10444
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/SingleCS_Updated.jpg

receiving data, and can do so at very high speeds. The SPI protocol is also simple enough that you
(yes, you!) can write your own routines to manipulate the I/O lines in the proper sequence to
transfer data. (A good example is on the Wikipedia SPI page.)

If you're using an Arduino, there are two ways you can communicate with SPI devices:

1. You can use the shiftIn() and shiftOut() commands. These are software-based commands that
will work on any group of pins, but will be somewhat slow.

2. Or you can use the SPI Library, which takes advantage of the SPI hardware built into the
microcontroller. This is vastly faster than the above commands, but it will only work on certain
pins.

You will need to select some options when setting up your interface. These options must match
those of the device you're talking to; check the device's datasheet to see what it requires.

The interface can send data with the most-significant bit (MSB) first, or least-significant bit
(LSB) first. In the Arduino SPI library, this is controlled by the setBitOrder() function.

The peripheral will read the data on either the rising edge or the falling edge of the clock
pulse. Additionally, the clock can be considered "idle" when it is high or low. In the Arduino
SPI library, both of these options are controlled by the setDataMode() function.

SPI can operate at extremely high speeds (millions of bytes per second), which may be too
fast for some devices. To accommodate such devices, you can adjust the data rate. In the
Arduino SPI library, the speed is set by the setClockDivider() function, which divides the
controller clock (16MHz on most Arduinos) down to a frequency between 8MHz (/2) and
125kHz (/128).

If you're using the SPI Library, you must use the provided SCK, COPI and CIPO pins, as the
hardware is hardwired to those pins. There is also a dedicated CS pin that you can use (which
must, at least, be set to an output in order for the SPI hardware to function), but note that you
can use any other available output pin(s) for CS to your peripheral device(s) as well.

On older Arduinos, you'll need to control the CS pin(s) yourself, making one of them low
before your data transfer and high afterward. Newer Arduinos such as the Due can control
each CS pin automatically as part of the data transfer; see the Due SPI documentation page
for more information.

Interested in learning more foundational topics?

See our Engineering Essentials page for a full list of cornerstone topics surrounding electrical
engineering.

Take me there!

Page 7 of 11

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://arduino.cc/en/Reference/ShiftIn
http://arduino.cc/en/Reference/ShiftOut
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPISetBitOrder
http://arduino.cc/en/Reference/SPISetDataMode
http://arduino.cc/en/Reference/SPISetClockDivider
http://arduino.cc/en/Reference/DueExtendedSPI
https://www.sparkfun.com/engineering_essentials
https://www.sparkfun.com/engineering_essentials

Resources and Going Further

Tips and Tricks

Because of the high speed signals, SPI should only be used to send data over short
distances (up to a few feet). If you need to send data further than that, lower the clock speed,
and consider using specialized driver chips.

If things aren't working the way you think they should, a logic analyzer is a very helpful tool.
Smart analyzers like the Saleae USB Logic Analyzer can even decode the data bytes for a
display or logging.

Page 8 of 11

http://arduino.cc/en/Reference/SPISetClockDivider
http://www.ti.com/lit/an/slyt441/slyt441.pdf
https://www.sparkfun.com/products/8938

Advantages of SPI:

It's faster than asynchronous serial

The receive hardware can be a simple shift register

It supports multiple peripherals

Disadvantages of SPI:

It requires more signal lines (wires) than other communications methods

The communications must be well-defined in advance (you can't send random amounts of
data whenever you want)

The controller must control all communications (peripherals can't talk directly to each other)

It usually requires separate CS lines to each peripheral, which can be problematic if numerous

Page 9 of 11

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/Saleae_Updated.jpg

peripherals are needed.

Further Reading

Check out the Wikipedia page on SPI, which includes lots of good information on SPI and other
synchronous interfaces.

This page presents a more correct way to set up an SPI network amongst your embedded devices,
particularly for use with an Arduino microcontroller.

A number of SparkFun products have SPI interfaces. For example, the Bar Graph Breakout kit has
an easy-to-use SPI interface that you can use to turn any of 30 LEDs on or off.

Other communication options:

Serial Communication

Asynchronous serial communication concepts: packets, signal levels, baud rates, UARTs and more!
Favorited Favorite 91

Analog to Digital Conversion

The world is analog. Use analog to digital conversion to help digital devices interpret the world.
Favorited Favorite 49

I2C

An introduction to I2C, one of the main embedded communications protocols in use today.
Favorited Favorite 115

AST-CAN485 Hookup Guide

The AST CAN485 is a miniature Arduino in the compact form factor of the ProMini. In addition to all
the usual features it has on-board CAN and RS485 ports enabling quick and easy interfacing to a
multitude of industrial devices.
Favorited Favorite 9

Now that you’re a pro on SPI, here are some other tutorials to practice your new skills:

MP3 Player Shield Music Box

Music Box Project based on the Dr. Who TARDIS.
Favorited Favorite 6

Using the Serial 7-Segment Display

How to quickly and easily set up the Serial 7-Segment Display and the Serial 7-Segment Display
Page 10 of 11

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://www.pjrc.com/better-spi-bus-design-in-3-steps/
https://learn.sparkfun.com/tutorials/what-is-an-arduino
https://www.sparkfun.com/products/10936

Shield.
Favorited Favorite 13

SparkFun BME280 Breakout Hookup Guide

A guide for connecting the BEM280 sensor to a microcontroller, and for using the Sparkfun Arduino
library.
Favorited Favorite 0

Raspberry Pi SPI and I2C Tutorial

Learn how to use serial I2C and SPI buses on your Raspberry Pi using the wiringPi I/O library for
C/C++ and spidev/smbus for Python.
Favorited Favorite 20

learn.sparkfun.com | CC BY-SA 3.0 | SparkFun Electronics | Niwot, Colorado

Page 11 of 11

https://learn.sparkfun.com
http://creativecommons.org/licenses/by-sa/3.0/

	Serial Peripheral Interface (SPI) a learn.sparkfun.com tutorial
	Available online at: http://sfe.io/t16
	Contents
	Introduction
	Suggested Reading
	Serial Communication
	Binary
	Shift Registers
	Logic Levels

	What's Wrong with Serial Ports?
	A Synchronous Solution
	Receiving Data
	Chip Select (CS)
	Multiple peripherals

	Programming for SPI
	Interested in learning more foundational topics?
	Resources and Going Further
	Tips and Tricks
	Advantages of SPI:
	Disadvantages of SPI:
	Further Reading
	Serial Communication
	Analog to Digital Conversion
	I2C
	AST-CAN485 Hookup Guide
	MP3 Player Shield Music Box
	Using the Serial 7-Segment Display
	SparkFun BME280 Breakout Hookup Guide
	Raspberry Pi SPI and I2C Tutorial

