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Digital Electronics 

1.0 Introduction to Number Systems 

 
Why so many Number Systems?  

Ask most people what the most commonly used 
number system is, and they would probably 
reply (after a bit of thought), the decimal 
system. But actually many number systems, and 
counting systems are used, without the users 
thinking much about it. For example clocks and 
compasses use the ancient Babylonian number 
system based on 60 rather than the decimal 
system based on 10. Why? Because 60 is easier 
to divide into equal segments, it can be evenly 
divided by 1,2,3,4,5,6,12,10,15, 20 and 30. This 
is much better for applications such as time, or 
degrees of angle than a base of 10, which can 
only be divided into equal parts by 1, 2 and 5. 

Many counting systems are ancient in origin 
and are still in use because they are useful for 
particular purposes. 
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What you’ll learn in Module 1  

Section 1.0 Number Systems.  

  • Recognise different number systems and their uses. 

Section 1.1 Number Systems in Electronics.  

  • Decimal. 

  • Binary. 

  • Octal. 

  • Hexadecimal. 

Section 1.2 Converting Number Systems  

  • Converting to decimal. 

  • Converting from decimal. 

  • Binary fractions. 

  • Binary and hexadecimal. 

Section 1.3 Binary Arithmetic.  

  • Binary Addition. 

  • Binary Subtraction. 

Section 1.4 Signed Binary.  

  • 8-bit signed binary arithmetic. 

Section 1.5 Ones & Twos Complement.  

  • 8-bit Ones complement arithmetic. 

  • 8-bit Twos complement arithmetic. 

  • Flag Registers. 

Section 1.6 Binary Coded Decimal.  

  • BCD codes. 

  • Convert between decimal and BCD8421. 

Section 1.7 Number Systems Quiz. 

Test your knowledge of number systems. 
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Using the decimal system it is easy to count up to ten fingers, using just the fingers on two hands. In 
northern Britain farmers, for centuries, used an ancient Celtic counting system, based on 20 (also 
called a score), to count their animals, and its use still persisted even into the second half of the 
twentieth century. 

The binary system, based on 2, is just another special number system, and is used by digital 
electronic devices because digital circuits work on an electrical ‘on or off’ two state system, a 
number system based on 2 is therefore much easier for electronic devices to use. However binary is 
not a natural choice for human counting or calculation. 

This module explains how binary, and some other number systems used in electronics work, and 
how computers and calculators use different forms of binary to carry out calculations. 
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1.1 Number Systems in Electronics 
Number Systems 

Most number systems follow a common pattern for writing 
down the value of a number: 

A fixed number of values can be written with a single 
numerical character, then a new column is used to count 
how many times the highest value in the counting system 
has been reached. The number of numerical values the 
system uses is called the base of the system. For example, 
the decimal system has 10 numerical characters and so has 
a base of 10: 

0 1 2 3 4 5 6 7 8 9 

For writing numbers greater than 9 a second column is 
added to the left, and this column has 10 times the value of 
the column immediately to its right.  

Because number systems commonly used in digital 
electronics have different base values to the decimal 
system, they look less familiar, but work in essentially the 
same way. 

 

 

Decimal, (base 10) 

Decimal has ten values 0 to 9. If larger values than 9 are needed, extra columns are added to the 
left. Each column value is ten times the value of the column to its right. For example the decimal 
value twenty-two is written 22 (2 tens + 2 ones). 

Binary, (base 2) 

Binary has only two values 0 and 1. If larger values than 1 are needed, extra columns are added to 
the left. Each column value is now twice the value of the column to its right. For example the 
decimal value three is written 11 in binary (1 two + 1 one). 

Octal, (base 8) 

Octal has eight values 0 to 7. If larger values than 7 are needed, extra columns are added to the left. 
Each column value is now 8 times the value of the column to its right. For example the decimal 
value twenty-seven is written 33 in octal (3 eights + 3 ones). 

Hexadecimal, (base 16) 

Hexadecimal has sixteen values 0 to 15, but to keep all these values in a single column, the 16 
values (0 to 15) are written as 0 to F, using the letters A to F to represent numbers 10 to 15, so 
avoiding the use of a second column. Again, if higher values than 15 (F in hexadecimal) are needed, 
extra columns to the left are used. Each column value is sixteen times that of the column to its right. 
For example the decimal value sixty-eight is written as 44 in hexadecimal (4 sixteens + 4 ones). 

What you’ll learn in Module 1.1  

After studying this section, you should 
be able to: 

Know the base values of commonly used 
number systems. 

• Decimal  

• Binary. 

• Octal. 

• Hexadecimal. 

Understand methods for extending the 
scope of number systems. 

• Exponents. 

• Floating point notation. 

• Normalised form. 

Know how numerical values may be 
stored in electronic systems 

• Bits. 

• Bytes. 

• Words. 

• Registers. 
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The reason for these differences is because each system has a different base, and the column values 
in each system increase by multiples of the base number as columns are added to the left. 

Table 1.1.1 

Some column values of different number systems 
Decimal 1000 100 10 1 
Binary 8 4 2 1 
Octal 512 64 8 1 

Hexadecimal 4096 256 16 1 

Because this module describes several different number systems, it is important to know which 
system is being described. Therefore if there is some doubt which system a number is in, the base of 
the system, written as a subscript immediately after the value, is used to identify the number system. 

For example: 

1010 represents the decimal value ten. (1 ten + 0 units) 

102 represents the binary value two. (1 two + 0 units) 

108 represents the octal value eight. (1 eight + 0 units) 

1016 represents the hexadecimal value sixteen. (1 sixteen + 0 units) 

The System Radix 

The base of a system, more properly called the RADIX, is the number of different values that can 
be expressed using a single digit. Therefore the decimal system has a radix of 10, the octal system 
has a radix of 8, hexadecimal is radix 16, and binary radix 2.  

The range of number values in different number systems is shown in Table 1.1.2, Notice that 
because the hexadecimal system must express 16 values using only one column, it uses the letters A 
B C D E & F to represent the numbers 10 to 15. 

Table 1.1.2 
Decimal Binary Octal Hexadecimal 

(Radix 10) (Radix 2) (Radix 8) (Radix 16) 
0 0 0 0 
1 1 1 1 
2  2 2 
3  3 3 
4  4 4 
5  5 5 
6  6 6 
7  7 7 
8   8 
9   9 

   A 

   B 

   C 

   D 

   E 

   F 
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The Radix Point. 

When writing a number, the digits used give its value, but the number is ‘scaled’ by its RADIX 
POINT. 

For example, 456.210 is ten times bigger than 45.6210 although the digits are the same. 

Notice also that when using multiple number systems, the term ‘RADIX point’ instead of 
‘DECIMAL point’ is used. When using decimal numbers, a decimal point is used, but if a different 
system is used, it would be wrong to call the point a decimal point, it would need to be called 
"Binary point" or "Octal point" etc. The simplest way around this is to refer to the point in any 
system (which will of course have its value labelled with its radix) as the RADIX POINT. 

Exponents 

A decimal number such as 456.210 can be considered as the sum of the values of its individual 
digits, where each digit has a value dependent on its position within the number (the value of the 
column): 

Table 1.1.3 
Col 2 Col 1 Col 0 Col -1 

4 hundreds + 5 tens + 6 units + 2 tenths 
(4 x 102) + (5 x 101) + (6 x 100) + (2 x 10-1) 

400 + 50 + 6 + 0.2 

= 456.210 

Each digit in the number is multiplied by the system radix raised to a power depending on its 
position relative to the radix point. This is called the EXPONENT. The digit immediately to the 
left of the radix point has the exponent 0 applied to its radix, and for each place to the left, the 
exponent increases by one. The first place to the right of the radix point has the exponent -1 and so 
on, positive exponents to the left of the radix point and negative exponents to the right. 

This method of writing numbers is widely used in electronics with decimal numbers, but can be 
used with any number system. Only the radix is different. 

Hexadecimal exponents 98.216 = (9 x 161) + (8 x 160) + (2 x 16-1) 

Octal exponents 56.28 = (5 x 81) + (6 x 80) + (2 x 8-1) 

Binary Exponents 10.12 = (1 x 21) + (0 x 20) + (1 x 2-1) 

When using your calculator for the above examples you may find that it does not like radix points in 
anything other than decimal mode. This is common with many electronic calculators. 

Floating Point Notation 

If electronic calculators cannot use radix points other than in decimal, this could be a problem. 
Fortunately for every problem there is a solution. The radix exponent can also be used to eliminate 
the radix point, without altering the value of the number. In the example below, see how the value 
remains the same while the radix point moves. It is all done by changing the radix exponent. 

102.610 = 102.6 x 100 = 10.26 x 101 = 1.026 x 102 = .1026 x 103 

The radix point is moved one place to the left by increasing the exponent by one. 
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It is also possible to move the radix point to the right by decreasing the exponent. In this way the 
radix point can be positioned wherever it is required - in any number system, simply by changing 
the exponent. This is called FLOATING POINT NOTATION and it is how calculators handle 
decimal points in calculations. 

Normalised Form 

By putting the radix point at the front of the number, and keeping it there by changing the exponent, 
calculations become easier to do electronically, in any radix. 

Electronic storage of numbers 

A number written (or stored) in this way, with the radix point at the left of the most significant digit 
is said to be in NORMALISED FORM. For example .110112 x 23 is the normalised form of the 
binary number 110.112. Because numbers in electronic systems are stored as binary digits, and a 
binary digit can only be 1 or 0, it is not possible to store the radix point within the number. 
Therefore the number is stored in its normalised form and the exponent is stored separately. The 
exponent is then reused to restore the radix point to its correct position when the number is 
displayed. 

In electronics systems a single binary digit is called a bit (short for Binary DigIT), but as using a 
single digit would seriously limit the maths that could be performed, binary bits are normally used 
in groups. 

4 bits = 1 nibble 

8 bits = 1 byte 

Multiple bytes, such as 16 bits, 32 bits, 64 bits are usually called ‘words’, e.g. a 32 bit word. The 
length of the word depends on how many bits can be physically handled or stored by the system at 
one time. 

4 Bit Binary Representation 

Table 1.1.4 
MSB 4 Bit Binary LSB 

Decimal 
23 = 8 22 = 4 21 = 2 20 = 1 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 
10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 

 



www.learnabout-electronics.org                                                                   Number Systems 

DIGITAL ELECTRONICS MODULE 01.PDF 7                                                                                                  E. COATES 2007-2014  

When a number is stored in an electronic system, it is stored in a memory location having a fixed 
number of binary bits. Some of these memory locations are used for general storage whilst others, 
having some special function, are called registers. Wherever a number is stored, it will be held in 
some form of binary, and must always have a set number of bits. Therefore a decimal number such 
as 13, which can be expressed in four binary bits as 11012 becomes 000011012 when stored in an 
eight-bit register. This is achieved by adding four NON-SIGNIFICANT ZEROS to the left of the 
most significant ‘1’ digit. 

Using this system, a binary register that is n bits wide can hold 2n values. 

Therefore an 8 bit register can hold 28 values = 256 values (0 to 255) 

A 4 bit register can hold 24 values = 16 values (0 to 15) 

HOW MANY VALUES CAN A 16 BIT REGISTER HOLD__________________________? 

Filling the register with non-significant zeros is fine - if the number is smaller than the maximum 
value the register will hold, but how about larger numbers? These must be dealt with by dividing 
the binary number into groups of 8 bits, each of which can be stored in a one-byte location, and 
using several locations to hold the different parts of the total value. Just how the number is split up 
depends on the design of the electronic system involved. 

Summary: 

•  Electronic systems may use a variety of different number systems, (e.g. Decimal, Hexadecimal, Octal, 
Binary). 

•  The number system in use can be identified by its radix (10, 16, 8, 2). 

•  The individual digits of a number are scaled by the Radix Point. 

•  The Exponent is the system radix raised to a power dependent on the column value of a particular digit 
in the number. 

•  In Floating Point Notation the Radix Point can be moved to a new position without changing the value of 
the number if the Exponent of the number is also changed. 

•  In Normalised Form the radix point is always placed to the left of the most significant digit. 

•  When numbers are stored electronically they are stored in a register holding a finite number of digits; if 
the number stored has less digits than the register, non-significant zeros are added to fill spaces to the left 
of the stored number. Numbers containing more digits than the register can hold are broken up into 
register sized groups and stored in multiple locations. 
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1.2 Converting Between Number Systems 
 

 

 

 

 

 

 

 

 

It is often necessary to convert values written in one number system to another. The simplest way is 
to reach for your calculator or use a conversion app. from the web. That is fine, but converting a 
number in this way does not help you to understand the way each number system works and how 
different systems are related. The purpose of this module is to explain just that, and to get you to 
carry out some simple conversions so that you can not only convert between number systems, but 
also understand how the conversion process works. There are various ways to tackle conversions 
without a calculator; once the conversion methods are learned, the only skills needed are the ability 
to multiply and divide, and to add together a few numbers. 

Conversion from any system to decimal. 

The number of values that can be expressed by a single digit in any number system is called the 
system radix, and any value can be expressed in terms of its system radix. 

Octal to Decimal 

For example the system radix of octal is 8, since any of the 8 values from 0 to 7 can be written as a 
single digit.  

Convert 1268 to decimal. 

Using the values of each column, (which in an octal integer are powers of 8) the octal value 1268 
can also be written as: 

(1x82) + (2x81) + (6 x 80)  

As (82 = 64),  (81 = 8) and (80 =1), this gives a multiplier value for each column.  

Multiply the digit in each column by the column multiplier value for that column to give: 

1x64 = 64  2x8 =16  6x1 = 6 

Then simply add these results to give the decimal value. 

64 + 16 + 6 = 8610 

Therefore 1268 = 8610. 

What you’ll learn in Module 1.2  

After studying this section, you should be able 
to: 

Convert numerical data between number systems.  
• Decimal.  

• Binary.  

• Octal.  

• Hexadecimal.  

Understand the relationships between number 
systems used in digital electronics.  

• Decimal fractions  

• Decimal & hexadecimal. 



www.learnabout-electronics.org                                                                   Number Systems 

DIGITAL ELECTRONICS MODULE 01.PDF 9                                                                                                  E. COATES 2007-2014  

The same method can be used to convert binary number to decimal: 

Convert 11012 to decimal. 

= (1x23)+(1x22)+(0x21) +(1x20) 

= 8 + 4 +0 +1  

= 1310   Therefore 11012 = 1310 

Using the same method to convert hexadecimal to decimal. 

Convert B2D16 to decimal. 

= (Bx162)+(2x161)+(Dx160) 

= (11x162)+(2x161)+(13x160) 

= 2816 + 32 +13  

= 286110 

Therefore B2D16 = 286110. 

The same method can be used to convert any system to decimal. 

Try these conversions to decimal WITHOUT YOUR CALCULATOR. 

1102 678 AFC16  FC16 

How do you know if your answer is correct? 

Convert your decimal answer back into its original format. 

 

Converting from Decimal to any Radix 

To convert a decimal integer number (a decimal number in which any fractional part is ignored) to 
any other radix, all that is needed is to continually divide the number by its radix, and with each 
division, write down the remainder. When read from bottom to top, the remainder will be the 
converted result. 

Decimal to Binary 

For example, to convert the decimal number 5710 to binary: 

Divide 5710 by the system radix, which when converting to binary is 
2. This gives the answer 28, with a remainder of 1. 

Continue dividing the answer by 2 and writing down the remainder 
until the answer = 0 

Now simply write out the remainders, starting from the bottom, to 
give 1110012  

Therefore 5710 = 1110012 

 

 

 

Example 1.2.1 Decimal 

to Binary Conversion 
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Decimal to Octal 

The same process works to convert decimal to octal, but this time the 
system radix is 8: 

Therefore 5710 = 718 

 

Decimal to Hexadecimal 

It also works to convert decimal to hexadecimal, but now the radix is 16: 

Therefore 5710 = 3916 

 

Numbers with Fractions 

It is very common in the decimal system to use fractions; that is any decimal number that contains a 
decimal point, but how can decimal numbers, such as 34.62510 be converted to binary fractions?  

In electronics this is not normally done, as binary does not work well with fractions. However as 
fractions do exist, there has to be a way for binary to deal with them. The method used is to get rid 
of the radix (decimal) point by NORMALISING the decimal fraction using FLOATING POINT 
arithmetic. As long as the binary system keeps track of the number of places the radix point was 
moved during the normalisation process, it can be restored to its correct position when the result of 
the binary calculation is converted back to decimal for display to the user. 

However, for the sake of completeness, here is a method for converting decimal fractions to binary 
fractions. By carefully selecting the fraction to be converted, the system works, but with many 
numbers the conversion introduces inaccuracies, a good reason for not using binary fractions in 
electronic calculations. 

Converting the Decimal Integer to Binary 

The radix point splits the number into two parts; the part to the 
left of the radix point is called the INTEGER. The part to the right 
of the radix point is the FRACTION. A number such as 34.62510 
is therefore split into 3410 (the integer), and .62510 (the fraction). 

To convert such a fractional decimal number to any other radix, 
the method described above is used to covert the integer. 

So 3410 = 1000102 

 

Converting the Decimal Fraction to Binary 

To convert the fraction, this must be MULTIPLIED by the radix 
(in this case 2 to convert to binary). Notice that with each 
multiplication a CARRY is generated from the third column. The 
Carry will be either 1 or 0 and these are written down at the left 
hand side of the result. However when each result is multiplied the 
carry is ignored (don’t multiply the carry). Each result is 
multiplied in this way until the result (ignoring the carry) is 000. 
Conversion is now complete.  

 

Example 1.2.2 Decimal 

to Octal Conversion 

Example 1.2.3 Decimal to 

Hexadecimal Conversion 

Example 1.2.4 Converting 

the Integer to Binary 

Example 1.2.5 Converting 

the Fraction to Binary 
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For the converted value just read the carry column from top to bottom. 

So 0.62510 = .1012 

Therefore the complete conversion shows that 34.62510 = 100010.1012  

However, with binary, there is a problem in using this method, .625 converted easily but many 
fractions will not. For example if you try to convert .626 using this method you would find that the 
binary fraction produced goes on to many, many places without a result of exactly 000 being 
reached. 

With some decimal fractions, using the above method will produce carries with a repeating pattern 
of ones and zeros, indicating that the binary fraction will carry on infinitely. Many decimal fractions 
can therefore only be converted to binary with limited accuracy. The number of places after the 
radix point must be limited, to produce as accurate an approximation as required. 

Quick Conversions 

The most commonly encountered number systems are binary and hexadecimal, and a quick method 
for converting to decimal is to use a simple table showing the column weights, as shown in Tables 
1.2.1a and 1.2.1b.  

Converting Binary to Decimal 

To convert from binary to decimal write down the binary number giving each column its correct 
‘weighting’ i.e. the value of the columns, starting with a value of one for the right hand (least 
significant column − or LEAST SIGNIFICANT BIT) column. Giving each column twice the value 
of the previous column as you move left. 

Table 1.2.1a 

Bit 27 26 25 24 23 22 21 20 

Value (weighting) of each bit 128 64 32 16 8 4 2 1 
8 Bit Binary 0 1 0 0 0 0 1 1 

Example: 

To convert the binary number 010000112 to decimal, write down the binary number and assign a 
‘weighting’ to each bit as in Table 1.2.1a  

Now simply add up the values of each column containing a 1 bit, ignoring any columns containing 
0. 

Applying the appropriate weighting to 01000011 gives 256 + 64 + 2 + 1 = 67 

Therefore: 010000112 = 6710 

 Converting Hexadecimal to Decimal 

A similar method can be used to quickly convert hexadecimal to 
decimal, using Table 1.2.1b 

 The hexadecimal digits are entered in the bottom row and then 
multiplied by the weighting value for that column. 

Adding the values for each column gives the decimal value. 

Therefore: 25CB16 = 967510 
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Now try some conversions yourself. Use pencil and paper to practice the method, rather than just 
finding the answer. 

Convert: 

110100112 to decimal. 

101110112 to decimal. 

34F216 to decimal. 

FFFF16 to decimal. 

Check your answer by converting the decimal back to binary or hexadecimal. 

Don’t use your calculator - you need to learn the method, not just the answer! 

Binary and Hexadecimal 

Converting between binary and hexadecimal is a much simpler process; hexadecimal 
is really just a system for displaying binary in a more readable form. 

Binary is normally divided into Bytes (of 8 bits) it is convenient for machines but 
quite difficult for humans to read accurately. Hexadecimal groups each 8-bit byte 
into two 4-bit nibbles, and assigns a value of between 0 and 15 to each nibble. 
Therefore each hexadecimal digit (also worth 0 to 15) can directly represent one 
binary nibble. This reduces the eight bits of binary to just two hexadecimal 
characters. 

For example: 

111010012 is split into 2 nibbles 11102 and 10012 then each nibble is assigned a 
hexadecimal value between 0 and F. 

The bits in the most significant nibble (11102) add up to 8+4+2+0 = 1410 = E16 

The bits in the least significant nibble (10012) add up to 8+0+0+1 = 910 = 916 

Therefore 111010012 = E916 

Converting hexadecimal to binary of course simply reverses this process. 

Table 1.2.2 

Binary Hex. 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 
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1.3 Binary Arithmetic 
Binary Addition Rules 

Arithmetic rules for binary numbers are quite 
straightforward, and similar to those used in 
decimal arithmetic. The rules for addition of 
binary numbers are: 

Notice that in Fig. 
1.3.1, 1+1 = (1)0 
requires a ‘carry’ of 1 
to the next column.  
Remember that binary 
102 = 210 decimal. 

 

 

Example: 

Binary addition is carried out just like decimal, by adding up the 
columns, starting at the right and working column by column towards 
the left. 

Just as in decimal addition, it is sometimes necessary to use a ‘carry’, 
and the carry is added to the next column. For example, in Fig. 
1.3.3 when two ones in the right-most column are added, the result 
is 210 or 102, the least significant bit of the answer is therefore 0 and 
the 1 becomes the carry bit to be added to the 1 in the next column. 

 
Binary subtraction rules 

The rules for binary subtraction are quite straightforward except 
that when 1 is subtracted from 0, a borrow must be created from 
the next most significant column. This borrow is then worth 210 
or 102 as a 1 bit in the next column to the left is always worth 
twice the value of the column on its right. 

 
Binary Subtraction 

The rules for subtraction of binary numbers are again similar to 
decimal. When a large digit is to be subtracted from a smaller 
one, a ‘borrow’ is taken from the next column to the left. In decimal subtractions the digit 
‘borrowed in’ is worth ten, but in binary subtractions the ‘borrowed in’ digit must be worth 210 or 
binary 102.  

After borrowing from the next column to the left, a ‘pay back’ must occur. The subtraction rules for 
binary are quite simple even if the borrow and pay back system create some difficulty. Depending 
where and when you learned subtraction at school, you may have learned a different subtraction 
method, other than ‘borrow and payback’, this is caused by changing fashions in education. 
However any method of basic subtraction will work with binary subtraction but if you do not want 
to use ‘borrow and payback’ you will need to apply your own subtraction method to the problem. 

What you’ll learn in Module 1.3  

After studying this section, you should be able 
to: 

Understand the rules used in binary calculations. 

• Addition. 

• Subtraction. 

• Use of carry, borrow & pay back. 

Understand limitations in binary arithmetic. 

• Word length. 

• Overflow. 

Fig. 1.3.1 Rules for 

Binary Addition 

Fig. 1.3.2 Simple 

Binary Addition 

Fig. 1.3.3 Binary 

Addition with Carry 

Fig. 1.3.4 Rules for Binary 

Subtraction 
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Fig. 1.3.5 shows how binary subtraction works by subtracting 
510 from 1110 in both decimal and binary. Notice that in the 
third column from the right (22) a borrow from the (23) column 
is made and then paid back in the MSB (23) column. 

Note: In Fig 1.3.5 a borrow is shown as 10, and a payback is 
shown as 01. Borrowing 1 from the next highest value column 
to the left converts the 0 in the 22 column into 102 and paying 
back 1 from the 22 column to the 23 adds 1 to that column, 
converting the 0 to 012. 

Once these basic ideas are understood, binary subtraction is not difficult, but does require some 
care. As the main concern in this module is with electronic methods of performing arithmetic 
however, it will not be necessary to carry out manual subtraction of binary numbers using this 
method very often. This is because electronic methods of subtraction do not use borrow and pay 
back, as it leads to over complex circuits and slower operation. Computers therefore, use methods 
that do not involve borrow. These methods will be fully explained in Number Systems Modules 1.5 
to 1.7. 

Subtraction Exercise 

Just to make sure you understand basic binary subtractions try the 
examples below on paper. Don’t use your calculator, click the image 
to download and print the exercise sheet. Be sure to show your 
working, including borrows and paybacks where appropriate. Using 
the squared paper helps prevent errors by keeping your binary 
columns in line. This way you will learn about the number systems, 
not just the numbers.  

Limitations of Binary Arithmetic  

Now back to ADDITION to illustrate 
a problem with binary arithmetic. In 
Fig. 1.3.6 notice how the carry goes 
right up to the most significant bit. 

This is not a problem with this example as the answer 10102 (1010) 
still fits within 4 bits, but what would happen if the total was greater 
than 1510? 

As shown in Fig 1.3.7 there are cases where a carry bit is created that 
will not fit into the 4-bit binary word. When arithmetic is carried out 
by electronic circuits, storage locations called registers are used that 
can hold only a definite number of bits. If the register can only hold 
four bits, then this example would raise a problem. The final carry bit 
is lost because it cannot be accommodated in the 4-bit register, 
therefore the answer will be wrong. 

To handle larger numbers more bits must be used, but no matter 
how many bits are used, sooner or later there must be a limit. 
How numbers are held in a computer system depends largely on 
the size of the registers available and the method of storing data in 
them, however any electronic system will have a way of 
overcoming this ‘overflow’ problem, but will also have some 
limit to the accuracy of its arithmetic. 

Fig. 1.3.6 Limits of 

4 Bit Arithmetic 

Fig. 1.3.7 The Overflow 

Problem 

 

Fig. 1.3.5 Binary Subtraction 
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1.4 Signed Binary 
Signed Binary Notation 

All the binary arithmetic problems looked at in 
Module 1.3 used only POSITIVE numbers. The 
reason for this is that it is not possible in PURE binary 
to signify whether a number is positive or negative. 
This of course would present a problem in any but the 
simplest of arithmetic. 

There are a number of ways in which binary numbers 
can represent both positive and negative values, 8 bit 
systems for example normally use one bit of the byte 
to represent either + or − and the remaining 7 bits to 
give the value. One of the simplest of these systems is 
SIGNED BINARY, also often called 'Sign and 
Magnitude', which exists in several similar versions, 
but is commonly an 8 bit system that uses the most 
significant bit (msb) to indicate a positive or a 
negative value. By convention, a 0 in this position 
indicates that the number given by the remaining 7 
bits is positive, and a most significant bit of 1 

indicates that the number is negative. 

 

 

For example: 

+4510 in signed binary is (0)01011012 

-4510 in signed binary is (1)01011012 

Note: 

The brackets around the msb (the sign bit) are included here for 
clarity but brackets are not normally used. Because only 7 bits are 
used for the actual number, the range of values the system can 
represent is from −12710 or 111111112, to +12710. 

A comparison between signed binary, pure binary and decimal 
numbers is shown in Table 1.4.1. Notice that in the signed binary 
representation of positive numbers between +010 and +12710, all the 
positive values are just the same as in pure binary. However the pure 
binary values equivalents of +12810 to +25510 are now considered to 
represent negative values −0 to −127. 

This also means that 010 can be represented by 000000002 (which is 
also 0 in pure binary and in decimal) and by 100000002 (which is 
equivalent to 128 in pure binary and in decimal). 

 

Table 1.4.1 
Binary Decimal Signed Binary   

11111111 255 −127 
11111110 254 −126 
11111101 253 −125 
11111100 252 −124 

   
10000011 131 −3 
10000010 130 −2 
10000001 129 −1 
10000000 128 −0 

  
  
  
  

− 
  
  
  
  

01111111 127 +127 
01111111 126 +126 
01111101 125 +125 
01111100 124 +124 

   
00000011 3 +3 
00000010 2 +2 
00000001 1 +1 
00000000 0 +0 

  
  
  
  

+ 
  
  
  
  

What you’ll learn in Module 1.4  

After studying this section, you should be 
able to: 

Recognise numbers using Signed Binary 
Notation. 

• Identify positive binary numbers. 

• Identify negative binary numbers. 

Understand Signed Binary arithmetic 

• Number representation. 

• Advantages of Signed Binary for 
arithmetic. 

• Disadvantages of Signed Binary for 
arithmetic. 
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Signed Binary Arithmetic 

Because the signed binary system now contains both positive and negative values, calculation 
performed with signed binary arithmetic should be more flexible. Subtraction now becomes 
possible without the problems of borrow and payback described in Number Systems Module 1.3. 
However there are still problems. Look at the two examples illustrated in Fig. 1.4.1 and 1.4.2, using 
signed binary notation. 

 

In Fig. 1.4.1 two positive (msb = 0) numbers are added 
and the correct answer is obtained. This is really no 
different to adding two numbers in pure binary as 
described Number Systems Module 1.3. 

 
 

 

In Fig. 1.4.2 however, the negative number −5 is added 
to +7, the same action in fact as SUBTRACTING 5 
from 7, which means that subtraction should be possible 
by merely adding a negative number to a positive 
number. Although this principle works in the decimal 
version the result using signed binary is 100011002 or 
−1210, which of course is wrong, the result of 7 − 5 
should be +2. 

 

Although signed binary can represent positive and negative numbers, if it is used for calculations, 
some special action would need to be taken, depending on the sign of the numbers used, and how 
the two values for 0 are handled, to obtain the correct result. Whilst signed binary does solve the 
problem of REPRESENTING positive and negative numbers in binary, and to some extent carrying 
out binary arithmetic, there are better sign and magnitude systems for performing binary arithmetic. 
These systems are the ONES COMPLEMENT and TWOS COMPLEMENT systems, which are 
described in Number Systems Module 1.5. 

Fig. 1.4.1 Adding Positive 

Numbers in Signed Binary 

Fig. 1.4.2 Adding Positive & Negative 

Numbers in Signed Binary 
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1.5 Ones and Twos Complement 
Ones Complement 

The complement (or opposite) of +5 is −5. When 
representing positive and negative numbers in 8-bit 
ones complement binary form, the positive numbers 
are the same as in signed binary notation described in 
Number Systems Module 1.4 i.e. the numbers 0 to 
+127 are represented as 000000002 to 011111112. 
However, the complement of these numbers, that is 
their negative counterparts from −127 to −0, are 
represented by ‘complementing’ each 1 bit of the 
positive binary number to 0 and each 0 to 1.  

For example: 

+510 is 000001012 and 

−510 is 111110102 

Notice in the above example, that the most significant 
bit (msb) in the negative number –510 is 1, just as in 
signed binary. The remaining 7 bits of the negative 
number however are not the same as in signed binary 
notation. They are just the complement of the 
remaining 7 bits, and these give the value or magnitude 
of the number. 

The problem with signed the binary arithmetic described in Number Systems Module 1.4 was that it 
gave the wrong answer when adding positive and negative numbers. Does ones complement 
notation give better results with negative numbers than signed binary? 

 

Fig. 1.5.1 shows the result of adding −4 to +6, using 
ones complement, this is the same as subtracting +4 
from +6, and so it is crucial to arithmetic. 

The result, 000000012 is 110 instead of 210.  

This is better than subtraction in signed binary, but it is 
still not correct. The result should be +210 but the result 
is +1 (notice that there has also been a carry into the 
none existent 9th bit). 

What you’ll learn in Module 1.5  

After studying this section, you should be 
able to: 

Understand ones complement notation. 

• Sign bit. 

• Value range. 

• Ones complement arithmetic. 

• End around carry. 

Understand ones complement notation. 

• Additive inverse 

• Twos complement addition. 

• Twos complement subtraction. 

• Negative results 

• Overflow situations. 

• Flag registers. 

 

Fig. 1.5.1 Adding Positive & Negative 

Numbers in Ones Complement 
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Fig. 1.5.2 shows another example, this time adding two 
negative numbers −4 and −3. 

Because both numbers are negative, they are first 
converted to ones complement notation. 

+410 is 000001002 in pure 8 bit binary, so 
complementing gives 11111011.  

 

This is −410 in ones complement notation. 

+3 is 0000001110 in pure 8 bit binary, so complementing gives 11111100.  

This is −310 in ones complement notation. 

The result of 111101112 is in its complemented form so the 7 bits after the sign bit (1110111), 
should be re-complemented and read as 0001000, which gives the value 810. As the most significant 
bit (msb) of the result is 1 the result must be negative, which is correct, but the remaining seven bits 
give the value of −8. This is still wrong by 1, it should be −7. 

End Around Carry 

There is a way to correct this however. Whenever the ones complement system handles negative 
numbers, the result is 1 less than it should be, e.g. 1 instead of 2 and −8 instead of −7, but another 
thing that happens in negative number ones complement calculations is that a carry is ‘left over’ 
after the most significant bits are added. Instead of just disregarding this carry bit, it can be added to 
the least significant bit of the result to correct the value. This process is called ‘end around carry’ 
and corrects for the result −1 effect of the ones complement system. 

There are however, still problems with both ones complement and signed binary notation. The ones 
complement system still has two ways of writing 010 (000000002 = +0 and 111111112 = −02). 

Additionally there is a problem with the way positive and negative numbers are written. In any 
number system, the positive and negative versions of the same number should add to produce zero. 
As can be seen from Table 1.5.1, adding +45 and −45 in decimal produces a result of zero, but this 
is not the case in either signed binary or ones complement.  

Table 1.5.1 

 Decimal Signed 
Binary 

Ones 
Complement 

 +45 00101101 00101101 

 −45 10101101 11010010 

Binary Sum  11011010 11111111 
Decimal Sum 010 −9010 −12710 

This is not good enough, however there is a system that overcomes this difficulty and allows correct 
operation using both positive and negative numbers. This is the Twos Complement system. 

Twos Complement Notation 

Twos complement notation solves the problem of the relationship between positive and negative 
numbers, and achieves accurate results in subtractions. 

To perform binary subtraction the twos complement system uses the technique of complementing 
the number to be subtracted. In the ones complement system this produced a result that was 1 less 
than the correct answer, but this could be corrected by using the ‘end around carry’ system. This 

Fig. 1.5.2 Adding Negative Numbers 

in Ones Complement 
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still left the problem that positive and negative versions of the same number did not produce zero 
when added together. 

The twos complement system overcomes both of these problems by simply adding one to the ones 
complement version of the number before addition takes place. The process of producing a 
negative number in Twos Complement Notation is illustrated in Table 1.5.2. 

Table 1.5.2 
Producing a Twos Complement Negative Number 

+5 in 8-bit binary (or 8-bit Signed Binary) is 00000101 
Complementing to produce the Ones Complement 11111010 

With 1 added 1 
So -5 in Twos Complement is 11111011 

 
 

This version of −5 now, not only gives the correct answer 
when used in subtractions but is also the additive inverse of 
+5 i.e. when added to +5 produces the correct result of 0, as 
shown in Fig. 1.5.3 

Note that in twos complement the (1) carry from the most 
significant bit is discarded as there is no need for the ‘end 
around carry’ fix. 

 

With numbers electronically stored in their twos complement form, subtractions can be carried out 
more easily (and faster) as the microprocessor has simply to add two numbers together using nearly 
the same circuitry as is used for addition. 

6 − 2 = 4 is the same as (+6) + (−2) = 4 

 

Twos Complement Examples 

 

 Twos Complement Addition 

Fig 1.5.4 shows an example of addition using 8 bit 
twos complement notation. When adding two positive 
numbers, their sign bits (msb) will both be 0, so the 
numbers are written and added as a pure 8-bit binary 
addition. 

Fig. 1.5.3 Adding a Number to its 

Twos Complement Produces Zero 

Fig. 1.5.4 Adding Positive Numbers 

in Twos Complement 

Note: When working with twos complement it is important to write numbers in their full 8 bit 
form, since complementing will change any leading 0 bits into 1 bits, which will be included in 
any calculation. Also during addition, carry bits can extend into leading 0 bits or sign bits, and 
this can affect the answer in unexpected ways. 
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Twos Complement Subtraction 

Fig.1.5.5 shows the simplest case of twos 
complement subtraction where one positive number 
(the subtrahend) is subtracted from a larger positive 
number (the minuend). In this case the minuend is 
1710 and the subtrahend is 1010. 

Because the minuend is a positive number its sign bit 
(msb) is 0 and so it can be written as a pure 8 bit 
binary number.  

The subtrahend is to be subtracted from the minuend 
and so needs to be complemented (simple ones complement) and 1 added to the least significant bit 
(lsb) to complete the twos complement and turn +10 into −10. 

When these three lines of digits, and any carry 1 bits are added, remembering that in twos 
complement, any carry from the most significant bit is discarded. The answer (the difference 
between 17 and 10) is 000001112 = 710, which is correct. Therefore the twos complement method 
has provided correct subtraction by using only addition and complementing, both operations that 
can be simply accomplished by digital electronic circuits. 

Subtraction with a negative result 

Some subtractions will of course produce an answer with a 
negative value. In Fig. 1.5.6 the result of subtracting 17 from 
10 should be −710 but the twos complement answer of 
111110012 certainly doesn’t look like −710. However the sign 
bit is indicating correctly that the answer is negative, so in 
this case the 7 bits indicating the value of the negative answer 
need to be 'twos complemented' once more to see the answer 
in a recognisable form. 

When the 7 value bits are complemented and 1 is added to the 
least significant bit however, like magic, the answer of 
100001112 appears, which confirms that the original answer 
was in fact −7 in 8 bit twos complement form. 

It seems then, that twos complement will get the right answer 
in every situation? 

Well guess what − it doesn’t! There are some cases where even twos complement will give a wrong 
answer. In fact there are four conditions where a wrong answer may crop up: 

1. When adding large positive numbers. 

2. When adding large negative numbers. 

3. When subtracting a large negative number from a large positive number. 

4. When subtracting a large positive number from a large negative number. 

Fig. 1.5.5 Subtracting a Positive Number 

from a Larger Positive Number 

 

Fig. 1.5.6 Subtraction Producing 

a Negative Result 
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The problem seems to be with the word ‘large’. What is large 
depends on the size of the digital word the microprocessor uses for 
calculation. As shown in Table 1.5.3, if the microprocessor uses an 
8-bit word, the largest positive number that can appear in the 
problem OR THE RESULT is +12710 and the largest negative 
number will be -12810. The range of positive values appears to be 1 
less than the negative range because 0 is a positive number in twos 
complement and has only one occurrence (000000002) in the whole 
range of 25610 values. 

With a 16-bit word length the largest positive and negative numbers 
will be +3276710 and -3276810, but there is still a limit to the largest 
number that can appear in a single calculation. 

Overflow Problems. 

Steps can be taken to accommodate large numbers, by breaking a 
long binary word down into byte sized sections and carrying out 
several separate calculations before assembling the final answer. 
However this doesn’t solve all the cases where errors can occur.  

A typical overflow problem that can happen even with 
single byte numbers is illustrated in Fig. 1.5.7. 

In this example, the two numbers to be added (11510 and 
9110) should give a sum of 20610 and converting 110011102 
to decimal looks like the correct answer (20610), but 
remember that in the 8 bit twos complement system the 
most significant bit is the sign of the number, therefore the 
answer appears to be a negative value and reading just the 
lower 7 bits gives 10011102 or -7810. Although twos 
complement negative answers are not easy to read, this is clearly wrong, as the result of adding two 
positive numbers must give a positive answer. 

According to the information in Fig 1.5.6, as the answer is negative, complementing the lower 7 bits 
of 110011102 and adding 1 should reveal the value of the correct answer, but carrying out the 
complement+1 on these bits and leaving the msb unchanged gives 101100102 which is −5010. This 
is nothing like the correct answer of 20610 so what has happened? 

The 8 bit twos complement notation has not worked here because adding 115 + 91 gives a total 
greater than +127, the largest value that can be held in 8-bit twos complement notation.  

What has happened is that an overflow has occurred, due to a 1 being carried from bit 6 to bit 7 (the 
most significant bit, which is of course the sign bit), this changes the sign of the answer. 
Additionally it changes the value of the answer by 12810 because that would be the value of the msb 
in pure binary. So the original answer of 7810 has ‘lost’ 12810 to the sign bit. The addition would 
have been correct if the sign bit had been part of the value, however the calculation was done in 
twos complement notation and the sign bit is not part of the value. 

Of course in real electronic calculations, a single byte overflow situation does not usually cause a 
problem; computers and calculators can fortunately deal with larger numbers than 12710. They 
achieve this because the microprocessors used are programmed to carry out the calculation in a 
number of steps, and although each step must still be carried out in a register having a set word 
length, e.g. 8 bits, 16 bits etc. corrective action can also be taken if an overflow situation is detected 
at any stage.  

Table 1.5.3 

Decimal 8-bit Twos 
Complement  

+127 01111111 

+126 01111110 

+125 01111101 

  
+2 00000010 

+1 00000001 

0 00000000 

+ 

-1 11111111 

-2 11111110 

  
-126 10000010 

-127 10000001 

-128 10000000 

- 

Fig. 1.5.7 Carry Overflows 

into Sign Bit 
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Microprocessors deal with this problem by using a special register called a status register, flag 
register or conditions code register, which automatically flags up any problem such as an overflow 
or a change of sign that occurs. It also provides other information useful to the programmer, so that 
whatever problem occurs; corrective action can be taken by software, or in many cases by firmware 
permanently embedded within the microprocessor to deal with a range of math problems. 

Whatever word length the microprocessor is designed to handle however, there must always be a 
limit to the word length, and so the programmer must be aware of the danger of errors similar to 
that described in Fig. 1.5.7. 

 A typical flag register is illustrated in Fig. 1.5.8 and 
consists of a single 8-bit storage register located 
within the microprocessor, in which some bits may 
be set by software to control the actions of the 
microprocessor, and some bits are set automatically 
by the results of arithmetic operations within the microprocessor.  

Typical flags for an 8-bit microprocessor are listed below: 

Bit 0 (C) (set by arithmetic result) = 1 Carry has been created from result msb. 

Bit 1 (Z) (set by arithmetic result) = 1 Calculation resulted in 0. 

Bit 2 (I) (set by software) 1 = Interrupt disable (Prevents software interrupts). 

Bit 3 (D) (set by software) 1 = Decimal mode (Calculations are in BCD). 

Bit 4 (B) (set by software) 1 = Break (Stops software execution). 

Bit 5 (X) Not used on this particular microprocessor. 

Bit 6 (V) (set by arithmetic result) = 1 Overflow has occurred (result too big for 8 bits). 

Bit 7 (N) (set by arithmetic result) = 1 Negative result (msb of result is 1). 

It seems therefore, that the only math that microprocessors can do is to add together two numbers of 
a limited value, and to complement binary numbers. Well at a basic level this is true, however there 
are some additional tricks they can perform, such as shifting all the bits in a binary word left or 
right, as a partial aid to multiplication or division. However anything more complex must be done 
by software. 

Subtraction and Division 

While addition and subtraction can be achieved by adding positive and negative numbers as 
described above, this does not include the other basic forms of mathematics, multiplication and 
division. Multiplication in its simplest form can however be achieved by adding a number to itself a 
number of times, for example, starting with a total of 0, if 5 is added to the total three times the new 
total will be fifteen (or 5 x 3). Division can also be accomplished by repeatedly subtracting (using 
add) the divisor from the number to be divided until the remainder is zero, or less than the divisor. 
Counting the number of subtractions then gives the result, for example if 3 (the divisor) is 
repeatedly subtracted from 15, after 5 subtractions the remainder will be zero and the count will be 
5, indicating that 15 divided by 3 is exactly 5. 

There are more efficient methods for carrying out subtraction and division using software, or extra 
features within some microprocessors and/or the use of embedded maths firmware.

Fig. 1.5.8 Typical 8-bit Flag Register 
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1.6 Binary Codes  
 Representing Decimal Numbers 

When calculations are carried out electronically 
they will usually be in binary or twos 
complement notation, but the result will very 
probably need to be displayed in decimal form. 
A binary number with its bits representing 
values of 1, 2, 4, 8, 16 etc. presents problems. 
It would be better if a particular number of 
binary bits could represent the numbers 0 to 9, 
but this doesn’t happen in pure binary, a 3 bit 
binary number represents the values 0 to 7 and 
4 bit represents 0 to 15. What is needed is a 
system where a group of binary digits can 
represent the decimal numbers 0-9, or ten times 
those values, 10-90 etc. 

To make this possible, binary codes are used that have ten values, but where each value is 
represented by the 1s and 0s of a binary code. These special ‘half way’ codes are called BINARY 
CODED DECIMAL or BCD. There are several different BCD codes, but they have a basic 
similarity. Each of the ten decimal digits 0 to 9 is represented by a group of 4 binary bits, but in 
codes the binary equivalents of the 10 decimal numbers do not necessarily need to be in a 
consecutive order. Any group of 4 bits can represent any decimal value, so long as the relationship 
for that particular code is known. 

In fact any ten of the 16 available four bit combinations 
could be used to represent 10 decimal numbers, and this is 
where different BCD codes vary. There can be advantages 
in some specialist applications in using some particular 
variation of BCD. For example it may be useful to have a 
BCD code that can be used for calculations, which means 
having positive and negative values, similar to the twos 
complement system, but BCD codes are most often used 
for the display of decimal digits. The most commonly 
encountered version of BCD binary code is the BCD8421 
code. In this version the numbers 0 to 9 are represented by 
their pure binary equivalents, 4 bits per decimal number, in 
consecutive order. 

 
 
BCD Codes 

BCD8421 code is so called because each of the four bits is given a ‘weighting’ according to its 
column value in the binary system. The least significant bit (lsb) has the weight or value 1, the next 
bit, going left, the value 2. The next bit has the value 4, and the most significant bit (msb) the value 
8, as shown in Table 1.6.1. 

What you’ll learn in Module 1.6  

After studying this section, you should be able to: 

Understand binary coded decimal. 

• 4 bit BCD codes. 

• Converting between binary and BCD. 

• Converting between BCD and decimal. 

• Compare BCD codes with different weighting. 

Understand Gray Code. 

• Composition of Gray Code. 

• Gray Coded Disks. 
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So the 8421BCD code for the decimal number 610 is 01108421. Check this from Table 1.6.1. 

For numbers greater than 9 the system is extended by using a second block of 4 bits to represent 
tens and a third block to represent hundreds etc. 

2410 in 8 bit binary would be 00011000 but in BCD8421 is 0010 0100. 

99210 in 16 bit binary would be 00000011111000002 but in BCD8421 is 1001 1001 0010. 

Therefore BCD acts as a half way stage between binary and true decimal representation, often 
preparing the result of a pure binary calculation for display on a decimal numerical display. 
Although BCD can be used in calculation, the values are not the same as pure binary and must be 
treated differently if correct results are to be obtained. The facility to make calculations in BCD is 
included in some microprocessors. 

One of the main drawbacks of BCD is that, because sixteen values are available from four bits, but 
only ten are used, there are several redundant values whichever BCD system is used. This is 
wasteful in terms of circuitry, as the fourth bit (the 8s column) is under used. 

Try some simple conversions between Decimal and BCD8421 

32110 to BCD8421 

6523110 to BCD8421  

001101110110 BCD8421 to decimal. 

0011001011000110 BCD8421 to decimal. 

Display Decoder/Drivers 

Depending on the type of display some further code conversion 
may also be needed. One popular type of decimal display is the 7 
segment display used in LED and LCD numerical displays, 
where any decimal digit is made up of 7 segments arranged as a 
figure 8, with an extra LED or LCD dot that can be used as a 
decimal point, as shown in Fig 1.6.1. These displays therefore 
require 7 inputs, one to each of the LEDs a to g (the decimal 
point is usually driven separately). Therefore the 4-bit output in 
BCD must be converted to supply the correct 7 bit pattern of 
outputs to drive the display.  

The four BCD bits are usually converted (decoded) to provide the 
correct logic for driving the 7 inputs of the display by integrated 
circuits such as the HEF4511B BCD to 7-segment decoder/driver 
from NXP Semiconductors and the 7466 BCD to 7-segment 
decoder.  

Fig. 1.6.1 Seven 

Segment Display 

 

Fig. 1.6.2 Driving a 

7 Segment Display 



www.learnabout-electronics.org                                                                   Number Systems 

DIGITAL ELECTRONICS MODULE 01.PDF 25                                                                                                  E. COATES 2007-2014  

Question 

BCD to 7 segment decoders 
implement a logic truth table such as 
the one illustrated in Table 1.6.2. 
There are different types of display 
implemented by different types of 
decoder, notice in table 1.6.2 that 
some of the output digits* may be 
either 1 or 0 (depending on the IC 
used). Why would this be, and what 
effect would it have on the display?  

 

Notice that the 4 bit input to the 
decoder illustrated in Table 1.6.2 
can, in this case, be in either BCD8421 
or in 4 bit binary as any binary 
number over 9 will result in a blank 
display. 

 

 
Alternative BCD Codes 

Although BCD8421 is the most commonly used version of BCD, a number of other codes exist using 
other values of weighting. Some of the more common variations are shown below. The weighting 
values in these codes are not randomly chosen, but each has particular merits for specific 
applications. Some codes are more useful for displaying decimal results with fractions, as with 
financial data. With others it is easier to assign positive and negative values to numbers. For 
example with Excess 3 code, 310 is added to the original BCD value and this makes the code 
‘reflexive’, that is the top half of the code is a mirror image and the complement of the bottom half. 
Other codes are designed to improve error detection in specific systems. Some of these less 
common BCD codes are shown in Table 1.6.3. 
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 Gray Code 

Binary codes are not only used for 
data output. Another special binary 
code that is extensively used for 
reading positional information on 
mechanical devices such as rotating 
shafts is Gray Code. This is a 4-bit 
code that uses all 16 values, and as 
the values change through 0-1510 
the code’s binary values change 
only 1 bit at a time, (see Table 
1.6.4). The binary values are 
encoded onto a rotating disk (Fig. 
1.6.3) and as it rotates the light and 
dark areas are read by optical 
sensors.  

 

 

As only one sensor sees a change at any one time, this reduces errors that may be created as the 
sensors pass from light to dark (0 to 1) or back again. The problem with this kind of sensing is that 
if two or more sensors are allowed to change simultaneously, it cannot be guaranteed that the data 
from the sensors would change at exactly the same time. If this happened there would be a brief 
time when a wrong binary code may be generated, suggesting that the disk is in a different position 
to its actual position. The one bit at a time feature of Gray Code effectively eliminates such errors. 
Notice also that the sequence of binary values also rotates continually, with the code for 15 
changing back to 0 with only 1 bit changing. With a 4 bit coded disk as illustrated in Fig. 1.6.3, the 
position is read every 22.5° but with more bits, greater accuracy can be achieved. 

Fig. 1.6.3 Four Bit Gray Code Disk 
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1.7 Number Systems Quiz 
Try our quiz, based on the information you can find in Digital Electronics Module 1 − Number 
Systems. Check your answers at  http://www.learnabout-electronics.org/Digital/dig17.php and see 
how many you get right. If you get any answers wrong. Just follow the hints to find the right answer 
and learn about the number systems used in digital electronics as you go. 
1. 

Which of the following numbers is equivalent to the normalised number .126 x 102 ? 

a) 1260010 

b) 12.610 

c) 10.2610 

d) 11111102 
 
2. 

Which of the following decimal numbers is equivalent to the highest value that can be held in an 8-
bit binary register using unsigned binary?  

a) 127 

b) 256 

c) 65536 

d) 255 
 
3. 

What is the decimal equivalent of the number 3A16?  

a) 58 

b) 39 

c) 310 

d) 49 
 

4. 

Refer to Fig. 1.7.1.Which of the tables correctly describes the rules 
of binary addition?  

a)  

b)  

c)  

d)  
 
5. 

What is the 8 bit unsigned binary result of 5610 − 3110?  

a) 000110012 

b) 000101012 

c) 001100012 

d) 000011012 

Fig. 1.7.1 
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6. 

What is the result of adding 710 and −410 using 8 bit signed binary notation?  

a) 100000112 

b) 000010112 

c) 100010112 

d) 000000112 
 
7. 

What is the widest range of decimal numbers that can be written in 8 bit signed binary notation?  

a) −127 to +127 

b) −0 to +256 

c) −128 to +128 

d) −256 to −1 
 
8. 

End around carry is used to correct the result of additions in which of the following number 
systems?  

a) 8 bit Signed Binary. 

b) 8 bit Ones Complement. 

c) 8 bit Twos Complement. 

d) Excess 3 BCD 
 
9. 

Which of the following 4 bit Excess 3 numbers is equivalent to 510?  

a) 1101bcdxs3 

b) 0010bcdxs3 

c) 1000bcdxs3 

d) 1010bcdxs3 

 

10. 

Which of the following Twos Complement binary numbers is equivalent to −7510?  

a) 11001011 

b) 01001100 

c) 11001100 

d) 10110101 


